Enriching Word Vectors with Subword Information

  • 更新时间: 2018-05-08
  • 作者: Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mik
  • 浏览数: 14
  • 发表评论

【摘 要】 Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character $n$-grams. A vector representation is associated to each character $n$-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.

【发布时间】 2017-06-19

【发布位置】 Computation and Language

标签: NLP

我来评分 :6