极大线性无关组

  • 更新时间: 2018-06-13
  • 来源: 原创或网络
  • 浏览数: 9次
  • 字数: 3843
  • 发表评论
极大线性无关组(maximal linearly independent system)是线性空间的基对向量集的推广。其定义为:设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如果满足(1) α1,α2,...αr 线性无关;(2) 向量组S中每一个向量均可由此部分组线性表示,那么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组。

1 简介

极大线性无关组(maximal linearly independent system)是线性空间的基对向量集的推广。设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。V中子集的极大线性无关组不是惟一的,例如,V的基都是V的极大线性无关组。它们所含的向量个数(基数)相同。V的子集S的极大线性无关组所含向量的个数(基数),称为S的秩。只含零向量的子集的秩是零。V的任一子集都与它的极大线性无关组等价。特别地,当S等于V且V是有限维线性空间时,S的秩就是V的维数。 [1]

2 基本性质

(1)只含零向量的向量组没有极大无关组;

(2)一个线性无关向量组的极大无关组就是其本身;

(3)极大线性无关组对于每个向量组来说并不唯一,但是每个向量组的极大线性无关组都含有相同个数的向量;

(4)齐次方程组的解向量的极大无关组为基础解系。

(5)任意一个极大线性无关组都与向量组本身等价。

(6)向量组的任意两个极大线性无关组都是等价的。

(7)若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无关向量组的向量个数小于或等于后者。

3 相关定理

定理 1

设a1,a2,…,ar与b1,b2,…,bs是两个向量组,如果

(1)向量组a1,a2,…,ar可以经b1,b2,…,bs线性表出;

(2)r>s;

那么向量组a1,a2,…,ar必线性相关。 

推论 1

如果向量组a1,a2,…,ar可以经b1,b2,…,bs线性表出,且a1,a2,…,ar线性无关,那么r≤s。 [3]

推论 2

任意n+1个n维向量必线性相关。

推论 3

两个线性无关的等价向量组,必含有相同个数的向量。

向量组的极大线性无关组都含有向量的个数相同。

定理 3

向量组线性无关的充分必要条件是,它的秩与它所含向量的个数相同。

推论 4

等价的向量组必有相同的秩。


标签: 向量 线性

我来评分 :6
0

转载注明:转自5lulu技术库

本站遵循:署名-非商业性使用-禁止演绎 3.0 共享协议