病毒

  • 更新时间: 2015-10-05
  • 来源: 原创或网络
  • 浏览数: 52次
  • 字数: 91384
  • 发表评论

病毒(英语:virus)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态的靠寄生生活的介于生命体及非生命体之间的有机物种,它既不是生物亦不是非生物。[1]。它是由一个保护性外壳包裹的一段DNA或者RNA,借由感染的机制,这些简单的有机体可以利用宿主的细胞系统进行自我复制,[2]但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,[3]迄今已有超过5000种类型的病毒得到鉴定。[4]研究病毒的科学被称为病毒学,是微生物学的一个分支。

病毒由两到三个成分组成:病毒都含有遗传物质(RNA或DNA,只由蛋白质组成的朊病毒并不属于病毒[5]);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面体形到复合型结构。病毒颗粒大约是细菌大小的百分之一。[6]病毒的起源目前尚不清楚,不同的病毒可能起源于不同的机制:部分病毒可能起源于质粒(一种环状的DNA,可以在细胞内复制并在细胞间进行转移),而其他一些则可能起源于细菌。

病毒的传播方式多种多样,不同类型的病毒采用不同的方法。例如,植物病毒可以通过以植物汁液为生的昆虫,如蚜虫,来在植物间进行传播;而动物病毒可以通过蚊虫叮咬而得以传播。这些携带病毒的生物体被称为“载体”。流感病毒可以经由咳嗽和打喷嚏来传播;诺罗病毒则可以通过手足口途径来传播,即通过接触带有病毒的手、食物和水;轮状病毒常常是通过接触受感染的儿童而直接传播的;此外,艾滋病毒则可以通过性接触来传播。

并非所有的病毒都会导致疾病,因为许多病毒的复制并不会对受感染的器官产生明显的伤害。一些病毒,如艾滋病毒,可以与人体长时间共存,并且依然能保持感染性而不受到宿主免疫系统的影响,即“病毒持续感染”(viral persistence)。[7]但在通常情况下,病毒感染能够引发免疫反应,消灭入侵的病毒。而这些免疫反应能够通过注射疫苗来产生,从而使接种疫苗的人或动物能够终生对相应的病毒免疫。像细菌这样的微生物也具有抵御病毒感染的机制,如限制修饰系统。[8]抗生素对病毒没有任何作用,但抗病毒药物已经被研发出来用于治疗病毒感染。

1 历史

关于病毒所导致的疾病,早在公元前二至三个世纪的印度中国就有了关于天花的记录。但直到19世纪末,病毒才开始逐渐得以发现和鉴定。1884年,法国微生物学家查理斯·尚柏朗发明了一种细菌无法滤过的过滤器(尚柏朗过滤器,其滤孔孔径小于细菌的大小),他利用这一过滤器就可以将液体中存在的细菌除去。1892年,俄国生物学家德米特里·伊凡诺夫斯基在研究烟草花叶病时发现,将感染了花叶病的烟草叶的提取液用烛形滤器过滤后,依然能够感染其他烟草。于是他提出这种感染性物质可能是细菌所分泌的一种毒素,但他并未深入研究下去。当时,人们认为所有的感染性物质都能够被过滤除去并且能够在培养基中生长,这也是疾病的细菌理论(germ theory)的一部分。1899年,荷兰微生物学家马丁乌斯·贝杰林克重复了伊凡诺夫斯基的实验,并相信这是一种新的感染性物质。他还观察到这种病原只在分裂细胞中复制,由于他的实验没有显示这种病原的颗粒形态,因此他称之为contagium vivum fluidum(可溶的活菌)并进一步命名为virus(病毒)。贝杰林克认为病毒是以液态形式存在的(但这一看法后来被温德尔·梅雷迪思·斯坦利推翻,他证明了病毒是颗粒状的)。同样在1899年,弗雷德里希·勒夫勒(Friedrich Loeffler)和保罗·弗罗施(Paul Frosch)发现患口蹄疫动物淋巴液中含有能通过滤器的感染性物质,由于经过了高度的稀释,排除了其为毒素的可能性;他们推论这种感染性物质能够自我复制。

20世纪早期,英国细菌学家弗雷德里克·图尔特发现了可以感染细菌的病毒,并称之为噬菌体。[15]随后法裔加拿大微生物学家Félix d'Herelle描述了噬菌体的特性:将其加入长满细菌的琼脂固体培养基上,一段时间后会出现由于细菌死亡而留下的空斑。高浓度的病毒悬液会使培养基上的细菌全部死亡,但通过精确的稀释,可以产生可辨认的空斑。通过计算空斑的数量,再乘以稀释倍数就可以得出溶液中病毒的个数。[16]他们的工作揭开了现代病毒学研究的序幕。

在19世纪末,病毒的特性被认为是感染性、可滤过性和需要活的宿主,也就意味着病毒只能在动物或植物体内生长。1906年,哈里森发明了在淋巴液中进行组织生长的方法;接着在1913年,E. Steinhardt、C. Israeli和R. A. Lambert利用这一方法在豚鼠角膜组织中成功培养了牛痘苗病毒,突破了病毒需要体内生长的限制。1928年,H. B. Maitland和M. C. Maitland有了更进一步的突破,他们利用切碎的母鸡肾脏的悬液对牛痘苗病毒进行了培养。他们的方法在1950年代得以广泛应用于脊髓灰质炎病毒疫苗的大规模生产。[18]

另一项研究突破发生在1931年,美国病理学家欧内斯特·威廉·古德帕斯丘(Ernest William Goodpasture)在受精的鸡蛋中培养了流感病毒。1949年,约翰·富兰克林·恩德斯、托马斯·哈克尔·韦勒和弗雷德里克·查普曼·罗宾斯利用人的胚胎细胞对脊髓灰质炎病毒进行了培养,这是首次在没有固体动物组织或卵的情况下对病毒进行的成功培养。这一研究成果被乔纳斯·索尔克利用来有效地生产脊髓灰质炎病毒疫苗。[20]

1931年,德国工程师恩斯特·鲁斯卡和马克斯·克诺尔发明了电子显微镜,使得研究者首次得到了病毒形态的照片。[21] 1935年,美国生物化学家和病毒学家温德尔·梅雷迪思·斯坦利发现烟草花叶病毒大部分是由蛋白质所组成的,并得到病毒晶体。[22]随后,他将病毒成功地分离为蛋白质部分和RNA部分。[23]温德尔·斯坦利也因为他的这些发现而获得了1946年的诺贝尔化学奖。[24]烟草花叶病毒是第一个被结晶的病毒,从而可以通过X射线晶体学的方法来得到其结构细节。第一张病毒的X射线衍射照片是由Bernal和Fankuchen于1941年所拍摄的。1955年,通过分析病毒的衍射照片,罗莎琳·富兰克林揭示了病毒的整体结构。[25]同年,海因茨·弗罗伦克-卡纳特(Heinz Fraenkel-Conrat)和罗布利·威廉姆斯发现将分离纯化的烟草花叶病毒RNA和衣壳蛋白混合在一起后,可以重新组装成具有感染性的病毒,这也揭示了这一简单的机制很可能就是病毒在它们的宿主细胞内的组装过程。

20世纪的下半叶是发现病毒的黄金时代,大多数能够感染动物、植物或细菌的病毒在这数十年间被发现。1957年,马动脉炎病毒和导致牛病毒性腹泻的病毒(一种瘟病毒)被发现;1963年,巴鲁克·塞缪尔·布隆伯格发现了乙型肝炎病毒;[28] 1965年,霍华德·马丁·特明发现并描述了第一种逆转录病毒;这类病毒将RNA逆转录为DNA的关键酶,即逆转录酶,在1970年由霍华德·马丁·特明和戴维·巴尔的摩分别独立鉴定出来。1983年,法国巴斯德研究院的吕克·蒙塔尼耶和他的同事弗朗索瓦丝·巴尔-西诺西首次分离得到了一种逆转录病毒,也就是现在世人皆知的艾滋病毒(HIV)。其二人也因此与发现了能够导致子宫颈癌的人乳头状瘤病毒的德国科学家哈拉尔德·楚尔·豪森分享了2008年的诺贝尔生理学与医学奖。

2 起源

只要有生命的地方,就有病毒存在;病毒很可能在第一个细胞进化出来时就存在了。[32]病毒起源于何时尚不清楚,因为病毒不形成化石,也就没有外部参照物来研究其进化过程,同时病毒的多样性显示它们的进化很可能是多条线路的而非单一的。[33] 分子生物学技术是目前可用的揭示病毒起源的方法;[34]但这些技术需要获得远古时期病毒DNA或RNA的样品,而目前储存在实验室中最早的病毒样品也不过90年。[35][36]有三种流行的关于病毒起源的理论:

  • 逆向理论(Regressive theory):病毒可能曾经是一些寄生在较大细胞内的小细胞。随着时间的推移,那些在寄生生活中非必需的基因逐渐丢失。这一理论的证据是,细菌中的立克次氏体和衣原体就像病毒一样,需要在宿主细胞内才能复制;而它们缺少了能够独立生活的基因,这很可能是由于寄生生活所导致的。这一理论又被称为退化理论(degeneracy theory)。
  • 细胞起源理论(有时也称为漂荡理论):[39][41]一些病毒可能是从较大生物体的基因中“逃离”出来的DNA或RNA进化而来的。逃离的DNA可能来自质粒(可以在细胞间传递的裸露DNA分子)或转座子(可以在细胞基因内不同位置复制和移动的DNA片断,[42]曾被称为“跳跃基因”,属于可移动遗传元件)。转座子是在1950年由巴巴拉·麦克林托克在玉米中发现的。
  • 共进化理论:病毒可能进化自蛋白质和核酸复合物,与细胞同时出现在远古地球,并且一直依赖细胞生命生存至今。类病毒是一类RNA分子,但不被归入病毒中,因为它们缺少由蛋白质形成的衣壳。然而,它们具有多种病毒的普遍特征,常常被称为亚病毒物质。类病毒是重要的植物病原体。它们没有编码蛋白质的基因,但可以与宿主细胞作用,利用宿主来进行它们自身的复制。人类丁型肝炎病毒具有和类病毒相似的RNA基因组,也不能生成自己的蛋白质衣壳,但却能够利用乙型肝炎病毒的衣壳。因此,丁型肝炎病毒是一种缺陷型病毒,需要乙型肝炎病毒的帮助才能够进行复制。这些依赖于其他种类病毒的病毒被称为“卫星病毒”,它们可能是介于类病毒和病毒之间的进化中间体。朊病毒是具有感染性的蛋白质分子,不含DNA或RNA。朊病毒会导致绵羊感染羊搔痒症或牛感染牛海绵状脑病(俗称“疯牛病”),也会使人获患库鲁病(Kuru)和克雅二氏病。[51]虽然缺乏核酸,朊病毒依然能够复制,这是因为在生物体内存在与朊病毒具有相同序列但结构不同的正常蛋白质,而朊病毒可以使这些正常蛋白质的结构发生变化,转化为朊病毒,这样新产生的朊病毒又可以感染更多的正常蛋白质,使得朊病毒越来越多。虽然朊病毒与病毒或类病毒本质完全不同,但朊病毒的发现进一步提高了该理论的可信性,说明病毒可能进化自能够自我复制的分子。

利用计算机来分析病毒和宿主DNA的序列信息,可以对不同病毒之间的进化关系有更好的了解,而且可以有助于发现现代病毒的祖先。至今这类分析还没有能够决定哪一种理论是正确的。而且不大可能所有的病毒都来自同一祖先,不同的病毒很可能是通过一种或多种机制在不同的时期产生。

对于病毒到底是一种生命形式,还是仅仅是一种能够与生物体作用的有机结构,人们的观点各不相同。有人将病毒描述为处于“生命边缘的生物体”,因为它们像其它生物体一样拥有基因、能够通过自然选择而进化并且能够通过自行组装来完成复制。然而,虽然病毒含有基因,但它们没有细胞结构,而细胞被认为是生命的基本单位;而且,病毒没有自身的代谢机制,需要通过宿主细胞来替它们完成复制繁殖,因此它们不能够在宿主细胞外进行繁殖(虽然属于细菌的立克次氏体和衣原体也具有同样的缺陷);被接受的生命形式是利用细胞分裂来进行繁殖的,而病毒是自发地在细胞内进行组装的,类似于晶体的自发生长过程。虽然病毒是否是一种生命形式,目前还没有定论,但病毒在宿主细胞内的自组装方式对于研究生命起源具有一定启示意义,有一种假说就认为生命是起始于有机分子的自组装。

3 结构

病毒,by 5lulu.com
A.无包膜病毒;B.具包膜病毒。①衣壳,②核酸,③壳粒,④核衣壳,⑤病毒体,⑥外套膜,⑦刺突蛋白

病毒的形状和大小(统称形态)各异。大多数病毒的直径在10-300奈米(nm)。一些丝状病毒的长度可达1400nm,但其宽度却只有约80nm。[6]大多数的病毒无法在光学显微镜下观察到,而扫描或透射电子显微镜是观察病毒颗粒形态的主要工具,常用的染色方法为负染色法。[58]

一个完整的病毒颗粒被称为“病毒体”(virion),是由蛋白质组成的具有保护功能的“衣壳(Capsid,或称蛋白质外壳)”和被衣壳包被的核酸组成。形成衣壳的等同的蛋白质亚基称作次“蛋白衣”或“壳粒”(capsomere)。[59]有些病毒的核衣壳外面,还有一层由蛋白质、多糖和脂类构成的膜叫做“包膜”(envelope,又称外套膜),包膜上生有“刺突”(spike),如流感病毒。衣壳是由病毒基因组所编码的蛋白质组成的,它的形状可以作为区分病毒形态的基础。[60][61]通常只需要存在病毒基因组,衣壳蛋白就可以自组装成为衣壳。但结构复杂的病毒还会编码一些帮助构建衣壳的蛋白质。与核酸结合的蛋白质被称为核蛋白,核蛋白与核酸结合形成核糖核蛋白,再与衣壳蛋白结合在一起就形成了“核衣壳”。病毒的形态一般可以分为以下四种:

螺旋形

病毒,by 5lulu.com
烟草花叶病毒结构:病毒RNA卷曲在的由重复的蛋白质亚基组成的螺旋形衣壳中。

螺旋形的衣壳是由壳粒绕着同一个中心轴排列堆积起来,以形成一个中空的棒状结构。这种棒状的病毒体可以是短而刚性的,也可以是长而柔性的。具有这种形态的病毒一般为单链RNA病毒,被研究得最多的就是烟草花叶病毒,[62]但也有少量单链DNA病毒也为螺旋形;无论是哪一种病毒,其核酸都通过静电相互作用与衣壳蛋白结合(核酸带负电而衣壳蛋白朝向中心的部分带正电)。一般来说,棒状病毒体的长度取决于内部核酸的长度,而半径取决于壳粒的大小和排列方式。用于定义这种螺旋形态的参数有两个:amplitude和pitch,前者即直径,而后者是指壳粒环绕一周后所前进的距离。

正二十面体形

  • 病毒,by 5lulu.com

    正二十面体

  • 病毒,by 5lulu.com

    具有正二十面体结构的腺病毒的电镜照片

大多数的动物病毒为正二十面体或具有正二十面体对称的近球形结构。二十面体具有5-3-2对称,即每个顶点为5重对称,每个面的中心为3重对称,每条边的中心为2重对称。[63]病毒之所以采用这种结构可能的一个很重要的原因是,规则的二十面体是相同壳粒形成封闭空间的一个最优途径,可以使所需的能量最小化。[64]形成二十面体所需的最少的等同的壳粒的数量为12,每个壳粒含有5个等同的亚基。但很少有病毒只含有60个衣壳蛋白亚基,多数正二十面体形病毒的亚基数量大于60,为60的倍数,倍数可以是3、4、7、9、12或更多。[64]由于二十面体的对称性,位于顶点的壳粒周围有五个壳粒环绕,被称为“penton”;而位于三角形面中心的壳粒周围有六个壳粒环绕,被称为“hexon”。[65]

包膜型

病毒,by 5lulu.com
带状疱疹病毒的电镜负染照片显示其病毒颗粒周围被包膜所环绕。

一些病毒可以利用改造后的宿主的细胞膜(来自细胞表面的质膜或细胞内部的膜,如核膜及内质网膜)环绕在病毒体周围,形成一层脂质的包膜。包膜上既镶嵌有来自宿主的膜蛋白也有来自病毒基因组编码的膜蛋白;而脂质膜本身和其中的糖类则都来自宿主细胞。包膜型病毒位于包膜内的病毒体可以是螺旋形或正二十面体形的。

无包膜的病毒在宿主细胞内完成复制后,需要宿主细胞死亡并裂解后,才能逸出并进一步感染其他细胞。这种方法虽然简单,但常常造成大量非成熟细胞死亡,反而降低了对宿主细胞的利用率。而有了包膜之后,病毒可以通过包膜与宿主的细胞膜融合来出入细胞,而不需要造成细胞死亡。[63]流感病毒和艾滋病毒就采用的是这种策略。大多数的包膜型病毒的感染性都依赖于包膜。

复合型

病毒,by 5lulu.com
一个典型的有尾噬菌体的结构:①头部,②尾部,③核酸,④头壳,⑤颈部,⑥尾鞘,⑦尾丝,⑧尾钉,⑨基板

与以上三类病毒形态相比,复合型病毒的结构复杂得多,它们的衣壳既非完全的螺旋形又非完全的正二十面体形,可以有附加的结构,如蛋白质组成的尾巴或复杂的外壁。有尾噬菌体和痘病毒都是比较典型的复合型病毒。

有尾噬菌体在噬菌体中数量最多,其壳体由头部和尾部组成,头部呈正二十面体对称,尾部呈螺旋对称,头部和尾部之间通过颈部相连。此外噬菌体的尾部还附着有一些尾鞘、尾丝和尾钉等。其头壳中包裹着噬菌体的基因组,而尾部的各个组件则在噬菌体感染细菌的过程中发挥作用。

痘病毒是一种具有特殊形态的体形较大的复合型病毒。其病毒基因组与结合蛋白位于被称为拟核的一个中心区域。拟核被一层膜和两个未知功能的侧体所围绕。痘病毒具有外层包膜,包膜外有一层厚的蛋白质外壳布满整个表面。痘病毒的形态有轻微的多态性,从卵状到砖块状都有。[67]

拟菌病毒(mimivirus)是目前已知最大的病毒,其衣壳直径达400nm,体积接近小型细菌,且表面布满长达100nm的蛋白质纤维丝。在电镜下观察到的拟菌病毒呈六边形,因此推测其衣壳应为二十面体对称。[68]

4 遗传物质

病毒遗传物质的多样性
性质 参数
核酸类型
  • DNA
  • RNA
  • DNA和RNA
形状
  • 线状
  • 环状
  • 分段
链型
  • 单链
  • 双链
  • 双链,部分区域为单链
  • 正义(+)
  • 反义(−)
  • 双义(+/−)

与一般的细胞生物的遗传物质为双链DNA不同的是,病毒的遗传物质(即病毒基因组)可以为DNA或RNA,可以为单链或双链。从目前已发现的病毒来看,更多的是RNA病毒;其中,植物病毒多为单链RNA病毒,而噬菌体多为双链DNA病毒。[69]不同病毒的遗传物质中的基因结构也各不相同,它们之间的差异性比动物、植物或细菌中任何一个生物域内物种间的差异性都要大。

病毒的核酸可以是环状的,如多瘤病毒,或线状的,如腺病毒。核酸的种类与其所呈现的形状无关。在RNA病毒中,病毒体中的核酸常可以分裂为多个区段,这种状态被称为“分段”(segmented)。其中的每一段常常编码一个蛋白质,并且这些区段通常位于同一个衣壳中。但每一个区段并不一定要在同一个病毒体中才能使病毒整体具有感染性,雀麦花叶病毒(Brome mosaic virus)就是一个例子。[6]

病毒的核酸可以是单链或双链,也与核酸的种类无关。双链的病毒核酸是由两条互补配对的核酸链所组成,如同一个梯子。而单链的病毒核酸是一条没有配对的核酸链,如同一个梯子从中间被分成两边的其中一边。一些病毒,如肝病毒科中的部分病毒,其核酸部分为单链,部分为双链。[69]

其核酸为RNA或单链DNA的病毒,其核酸链可以被分为正义链或反义链,这种划分取决于其与病毒mRNA是否互补。正义病毒RNA与病毒mRNA等同,因此可以被宿主细胞直接用于翻译。反义病毒RNA与病毒mRNA互补,必须通过RNA聚合酶合成正义病毒RNA后,才能够进行翻译。单链DNA的情况与RNA相似,“编码链”(与病毒mRNA互补)为反义链(−),而“非编码链”为正义链(+)。[69]

不同病毒的核酸的大小差别很大。最小的病毒基因组分子量只有106道尔顿,编码4个蛋白质;最大的病毒基因组则有108道尔顿,编码超过100个蛋白质。[69] RNA病毒的基因组通常比DNA病毒来的小,这是由于其复制过程有更高的错误率,使得RNA病毒的大小有上限。如果超出这一上限,复制后的RNA病毒基因组会出现错误,使得导致病毒无功能或无竞争力。为了弥补这一缺陷,RNA病毒通常将自己的核酸分成多个分子,每一个分子就是一段基因组,这样也就降低了复制过程中的错误率。相比而言,由于DNA病毒具有保真度较高的复制酶,降低了复制的错误几率,因而其基因组也就更大。

遗传变异

病毒,by 5lulu.com
两个不同的流感病毒株如何通过抗原转移或基因重排,形成新的病毒株。

病毒的遗传变异可以有多种机制。“遗传漂变”(genetic drift)是其中之一,即病毒DNA或RNA上单个碱基的突变。大多数这样的单点突变是无义的(或者说是沉默的),因为它们没有导致所编码的蛋白质发生变化;但有一小部分突变可能会引起进化上的优势,如产生对抗病毒药物的抵抗力。[70]抗原漂移(antigenic shift)是另一种病毒基因组的主要变化,是由遗传重组或基因重排所导致的。当流感病毒发生抗原转移后,可能会导致瘟疫。RNA病毒常常以准种(quasispecies)的形式或大量同种但基因组核苷酸序列存在微小差异的病毒的形式存在。这样的准种是自然选择的主要目标。

分段的基因组具有进化上的优势:同一种病毒的不同的病毒株中的分段基因组可以进行重排,重排后产生的后代病毒具有不同于上一代的独特的特征。这种基因重排又被称为“病毒的有性生殖”(viral sex)。

遗传重组是一条DNA链断裂后重新连接到另一条不同DNA分子末端的过程。遗传重组可以在病毒感染细胞的同时发生。对病毒进化的研究结果显示,在已研究的各种病毒中,重组发生得极为频繁。[74]而且,无论是RNA病毒还是DNA病毒,重组的发生都是非常普遍的。

5 生命周期

病毒,by 5lulu.com
流感病毒自我复制过程简图:1.病毒体附着到宿主细胞表面并通过胞吞进入细胞;2.衣壳分解后,病毒核糖核蛋白转运入核;3a.病毒基因组转录;3b.病毒基因组复制;4.新合成的病毒mRNA出核并完成翻译;5a.合成的核蛋白入核与新复制的核酸结合;5b.合成的病毒表面蛋白进入高尔基体完成翻译后修饰并转运上膜;6.新形成的核衣壳进入细胞质并与插有病毒表面蛋白的细胞膜结合;7.新生成的病毒体通过出泡方式离开宿主细胞。[77]

由于病毒是非细胞的,无法通过细胞分裂的方式来完成数量增长;它们是利用宿主细胞内的代谢工具来合成自身的拷贝,并完成病毒组装。不同的病毒之间生命周期的差异很大,但大致可以分为六个阶段:[78]

  1. 附着:首先是病毒衣壳蛋白与宿主细胞表面特定受体之间发生特异性结合。这种特异性决定了一种病毒的宿主范围。例如,艾滋病毒只能感染人类T细胞,因为其表面蛋白gp120能够与T细胞表面的CD4分子和受体结合。这种吸附机制通过不断的进化,使得病毒能够更特定地结合那些使它们能够完成复制过程的细胞。对于带包膜的病毒,吸附到受体上可以诱发包膜蛋白发生构象变化从而导致包膜与细胞膜发生融合。
  2. 入侵:病毒附着到宿主细胞表面之后,通过受体介导的胞吞或膜融合进入细胞,这一过程通常被称为“病毒进入”(viral entry)。感染植物细胞与感染动物细胞不同,因为植物细胞有一层由纤维素形成的坚硬的细胞壁,病毒只有在细胞壁出现伤口时才能进入。[79]一些病毒,如烟草花叶病毒可以直接在植物内通过胞间连丝的孔洞从一个细胞运动到另一个细胞。[80]与植物一样,细菌也有一层细胞壁,病毒必须通过这层细胞壁才能够感染细菌。一些病毒,如噬菌体,进化出了一种感染细菌的机制,将自己的基因组注入细胞内而衣壳留在细胞外,从而减少进入细菌的阻力。[81]
  3. 脱壳:然后病毒的衣壳被病毒自己的或宿主细胞中的酶降解破坏,病毒的核酸得以释放。
  4. 合成:病毒基因组完成复制、转录(除了正义RNA病毒外)以及病毒蛋白质合成。
  5. 组装:将合成的核酸和蛋白质衣壳各部分组装在一起。在病毒颗粒完成组装之后,病毒蛋白常常会发生翻译后修饰。在诸如艾滋病毒等一些病毒中,这种修饰作用(有时被称为成熟过程),可以发生在病毒从宿主细胞释放之后。[82]
  6. 释放:无包膜病毒需要在细胞裂解(通过使细胞膜发生破裂的方法)之后才能得以释放。对于包膜病毒则可以通过出泡的方式得以释放。在出泡的过程中,病毒需要从插有病毒表面蛋白的细胞膜结合,获取包膜。

DNA病毒

大多数DNA病毒基因组的复制发生在细胞核内。只要细胞表面有合适的受体,这些病毒就能够通过胞吞或膜融合的方式进入细胞。多数DNA病毒完全依赖宿主细胞的DNA和RNA的合成工具以及RNA的加工工具。而病毒基因组必须穿过核膜来获得对这些工具的控制。[83][84]

RNA病毒

RNA病毒的复制过程比较独特,由于其遗传信息保存在RNA上,因此复制过程通常发生在细胞质中。根据复制方式的不同,RNA病毒可以被分为4个不同的组别(见分类一节)。RNA病毒的极性(即病毒RNA能否直接被用于蛋白质合成)以及RNA是单链还是双链,很大程度上决定了它的复制机制。RNA病毒是用它们自己的RNA复制酶来对基因组进行复制。

反转录病毒

反转录病毒基因组的复制是采用反转录的方式来完成的,即利用RNA模板来合成DNA。遗传物质为RNA的反转录病毒以DNA为中间物来复制其基因组,而遗传物质为DNA的反转录病毒则以RNA为中间物来复制。两类病毒都需要用到反转录酶。反转录病毒常常可以将通过反转录合成的DNA整合到宿主细胞的基因组中。能够抑制反转录酶活性的抗病毒药物(如齐多夫定和拉米夫定)可以有效地对抗反转录病毒(如艾滋病毒和包括乙肝病毒在内的肝病毒科病毒)。


6 病毒特征

是颗粒很小、以纳米为测量单位、结构简单、寄生性严格,以复制进行繁殖的一类非细胞型微生物。病毒是比细菌还小、没有细胞结构、只能在细胞中增殖的微生物。由蛋白质和核酸组成。 大部分要用电子显微镜才能观察到。
原指一种动物来源的毒素。“virus”一词源于拉丁文。病毒能增殖、遗传和演化,因而具有生命最基本的特征,至今对它还没有公认的定义。其主要特点是:
①形体极其微小,一般都能通过细菌滤器,因此病毒原叫“滤过性病毒”,必须在电子显微镜下才能观察。
②没有细胞构造,其主要成分仅为核酸和蛋白质两种,故又称“分子生物”;
③每一种病毒只含一种核酸,不是DNA就是RNA。
④既无产能酶系,也无蛋白质和核酸合成酶系,只能利用宿主活细胞内现成代谢系统合成自身的核酸和蛋白质成分。
⑤以核酸和蛋白质等“元件”的装配实现其大量繁殖。
⑥在离体条件下,能以无生命的生物大分子状态存在,并长期保持其侵染活力。
⑦对一般抗生素不敏感,但对干扰素敏感。
⑧有些病毒的核酸还能整合到宿主的基因组中,并诱发潜伏性感染。
简单理解
病毒,是一类不具细胞结构,具有遗传、复制等生命特征的微生物。一般为球状病毒、杆状病毒和蝌蚪状病毒。
病毒同所有的生物一样,具有遗传、变异、进化的能力,是一种体积非常微小,结构极其简单的生命形式,病毒有高度的寄生性,完全依赖宿主细胞的能量和代谢系统,获取生命活动所需的物质和能量,离开宿主细胞,它只是一个大化学分子,停止活动,可制成蛋白质结晶,为一个非生命体,遇到宿主细胞它会通过吸附、进入、复制、装配、释放子代病毒而显示典型的生命体特征,所以病毒是介于生物与非生物的一种原始的生命体。
病毒的分类:
从遗传物质分类:DNA病毒、RNA病毒、蛋白质病毒(如:朊病毒)
从病毒结构分类:真病毒(Euvirus,简称病毒)和亚病毒(Subvirus,包括类病毒、拟病毒、朊病毒)
从寄主类型分类:噬菌体(细菌病毒)、植物病毒([1]  如烟草花叶病毒)、动物病毒(如禽流感病毒、天花病毒、HⅣ等)
从性质来分:温和病毒(HⅣ)、烈性病毒(狂犬病毒)。
病毒的形态
⑴球状病毒;⑵杆状病毒;⑶砖形病毒;⑷冠状病毒;⑸丝状病毒
⑹链状病毒;⑺有包膜的球状病毒;⑻具有球状头部的病毒;⑼封于包含体内的昆虫病毒。
病毒粒的对称体制:
病毒粒的对称体制只有两种,即螺旋对称(代表烟草花叶病毒)和二十面体对称(等轴对称,代表腺病毒)。一些结构较复杂的病毒,实质上是上述两种对称相结合的结果,故称作复合对称(代表T偶数噬菌体)
病毒的大小
多数病毒直径在100nm(20~200nm),较大的病毒直径为300-450纳米(nm),较小的病毒直径仅为18-22纳米
病毒的组成
病毒主要由内部的遗传物质和蛋白质外壳组成。由于病毒是一类非细胞生物体,故单个病毒个体不能称作"单细胞",这样就产生了病毒粒或病毒体(virion)。病毒粒有时也称病毒颗粒或病毒粒子(virus particle),专指成熟的、结构完整的和有感染性的单个病毒。核酸位于它的中心,称为核心(core)或基因组(genome),蛋白质包围在核心周围,形成了衣壳(capsid).衣壳是病毒粒的主要支架结构和抗原成分,有保护核酸等作用。衣壳是由许多在电镜下可辨别的形态学亚单位(subunit)——衣壳粒(capsomere)所构成。核心和衣壳合称核心壳(nucleocapsid)。有些较复杂的病毒,(一般为动物病毒,如流感病毒),其核心壳外还被一层含蛋白质或糖蛋白(glycoprotein)的类脂双层膜覆盖着,这层膜称为包膜(envelope)。包膜中的类脂来自宿主细胞膜。有的包膜上还长有刺突(spike)等附属物。包膜的有无及其性质与该病毒的宿主专一性和侵入等功能有关。昆虫病毒中有1类多角体病毒,其核壳被蛋白晶体所包被,形成多角形包涵体。
病毒的复制过程叫做复制周期。其大致可分为连续的五个阶段:吸附、侵入、增殖、成熟(装配)、裂解(释放)。
病毒的结构
1.病毒的基本结构
有核心和衣壳,二者形成核衣壳。核心位于病毒体的中心,为核酸,为病毒的复制、遗传和变异提供遗传信息;衣壳是包围在核酸外面的蛋白质外壳。
衣壳的功能:①具有抗原性;②保护核酸;③介导病毒与宿主细胞结合。
2.病毒的辅助结构
有些病毒核衣壳外还有一层脂蛋白双层膜状结构,是病毒以出芽方式释放,穿过宿主细胞膜或核膜时获得的,称之为包膜。在包膜表面有病毒编码的糖蛋白,镶嵌成钉状突起,称为刺突。有包膜病毒对有机溶剂敏感。
包膜功能:①保护核衣壳;②促进病毒与宿主细胞的吸附;③具有抗原性。
病毒出现假说:
1.蛋白质、核酸遗失说:
大生物(此处大生物意思是具有细胞结构的生物,区别于病毒的非细胞结构生物)由于细胞脱落和破裂,导致游离的蛋白质和DNA、RNA的出现,在某种情况下,这些蛋白质由于化学作用形成了一个内部可容纳小分子的结构,里面裹着DNA或者RNA,甚至单独的蛋白质和单独的DNA、RNA游离。
2.生命起源说:
病毒是最原始的生命体,早在没有细胞之前就有病毒存在,那时的病毒还只限于蛋白质和核酸,没有表现出病毒的寄生特征,当细胞体生物出现之后,个别这种蛋白质和核酸或他们的复合体表现出寄生性。

7 特性介绍

病毒性质的两重性;
一、病毒生命形式的两重性
1.病毒存在的两重性 病毒的生命活动很特殊,对细胞有绝对的依存性。其存在形式有二:一是细胞外形式,一是细胞内形式。存在于细胞外环境时,则不显复制活性,但保持感染活性,是病毒体或病毒颗粒形式。进入细胞内则解体释放出核酸分子(DNA或RNA),借细胞内环境的条件以独特的生命活动体系进行复制,是为核酸分子形式。
⒉病毒的结晶性与非结晶性 病毒可提纯为结晶体。我们知道结晶体是一个化学概念,是很多无机化合物存在的一种形式,我们可以认为某些病毒有化学结晶型和生命活动型的两种形式。
3.颗粒形式与基因形式 病毒以颗粒形式存在于细胞之外,此时,只具感染性。一旦感染细胞病毒解体而释放出核酸基因组,然后才能进行复制和增殖,并产生新的子代病毒。有的病毒基因组整合于细胞基因组,随细胞的繁殖而增殖,此时病毒即以基因形式增殖,而不是以颗粒形式增殖,这是病毒潜伏感染的一种方式。
二、病毒结构和功能的两重性
1.标准病毒与缺陷病毒在病毒的增殖过程中,由于其基因组因某种微环境因素的影响或转录过程的错误而发生突变,以致有装配不全的病毒颗粒产生,称为缺陷病毒,产生缺陷病毒的原亲代病毒,则称为标准病毒,缺陷病毒颗粒有干扰标准病毒繁殖的作用。
2.假病毒与真病毒一种细胞有两种病毒同时感染的情况,在增殖过程中,一种病毒可以穿上本身的外壳,这就是真病毒,是这种病毒的应有“面目”;如果一种病毒的核酸被以另一病毒外壳来编码,则称为假病毒,此时一种病毒的本来性质,被另一种病毒的性质所掩盖。
3.杂种病毒和纯种病毒两种病毒混合感染时,除了出现假型病毒外,还有可能出现病毒核酸重组的情况,即一种病毒颗粒之中,可含有两种病毒的遗传物质,此可称为杂种病毒,这是病毒学中一个相当常见的现象。
三、病毒病理学的两重性
1.病毒的致病性和非致病性关于致病性和非致病性问题,是同宿主细胞相对而言的,在分子水平、细胞水平和机体水平,可能有不同的含义。在细胞水平有细胞病变作用,但在机体水平可能并不显示临床症状,此可称为亚临床感染或不显感染。
2.病毒感染的急性和慢性 病毒感染所致的临床症状有急、慢之分,有的病毒一般只表现急性感染而很少表现慢性感染;有的则既有急性过程,也有慢性过程。
对病毒的概念可以是:病毒是代谢上无活性,有感染性,而不一定有致病性的因子,他们小于细胞,但大于大多数大分子,他们无例外地在生活细胞内繁殖,他们含有一个蛋白质或脂蛋白外壳和一种核酸,DNA或RNA,甚至只含有核酸而没有蛋白质,或只有蛋白质而没有核酸,它们作为大分子似乎太复杂,作为生物体它们的生理和复制方式又千姿百态。Lwoff在“病毒的概念”一文中强调病毒的特殊性时指出,“病毒应该就是病毒,因为它们是病毒”。

8 病毒分类

结构分类

国际病毒分类委员会(ICT V)第七次报告(1999),将所有已知的病毒根据核酸类型分为DNA病毒——单股DNA病毒,DNA病毒——双股DNA病毒,DNA与RNA反转录病毒,RNA病毒——双股RNA病毒,RNA病毒——单链、单股RNA病毒,裸露RNA病毒及类病毒等八大类群。此外,还增设亚病毒因子一类。这个报告认可的病毒约4000种,设有三个病毒目,64个病毒科,9个病毒亚科,233个病毒属,其中29个病毒属为独立病毒属。亚病毒因子类群,不设科和属。包括卫星病毒和prion(传染性蛋白质颗粒或朊病毒)。一些属性不很明确的属称暂定病毒属。
病毒在自然界分布广泛,可感染细菌、真菌、植物、动物和人,常引起宿主发病。但在许多情况下,病毒也可与宿主共存而不引起明显的疾病。
Cafeteria roenbergensis病毒
Cafeteria roenbergensis病毒的发现模糊了什么是活的有机体,以及什么是非生命之间的界限。Cafeteria roenbergensis,是一种世界上最大、最复杂的海洋病毒,该病毒主要感染那些吃海洋生态系统中非常重要和分布广泛的浮游生物的掠食者。大多数的病毒都是轻装旅行的。它们仅仅携带了合成新病毒所需的少量基因,并依赖其宿主的机制来完成剩下的工作。2010年10月,加拿大温哥华市不列颠哥伦比亚大学的Matthias G. Fischera和同事发现了一种被称为Cafeteria roenbergensis飞病毒——它携带了令人难以置信的约73万个脱氧核糖核酸(DNA)碱基对,其中包括超过500个类似于基因的区域。2010年10月25日,研究人员在美国《国家科学院院刊》(PNAS)网络版上报告了这一研究成果。这也使得这种病毒成为已知最大的海洋病毒,它甚至比一些细菌所具有的DNA还要多。
这种病毒主要感染那些吃海洋生态系统中非常重要和分布广泛的浮游生物的掠食者。这种病毒的基因组比一些细胞生物的基因组还大。此外,Cafeteria roenbergensis病毒成为目前(2010年10月)已知的世界最大海洋病毒和第二大病毒,排名仅次于淡水病毒——多噬棘阿米巴模仿病毒,后者拥有120万个碱基对。这种病毒可能还是一大组未知但是具有生态重要性的海洋巨型病毒的代表。
研究人员推测,与较小的病毒相比,例如艾滋病病毒(HⅣ)或疱疹病毒,这种病毒——能够感染Cafeteria roenbergensis,后者是一种猎食性的单细胞有机体,能够捕食海洋中的细菌和其他病毒——在其蛋白质的合成过程中扮演了一个更加积极的角色。研究人员指出,这种病毒拥有大量基因,这些基因通常被活细胞用于修复它们的DNA损伤以及合成蛋白质和糖。它还拥有编码病毒复制需要但是必须从宿主生物那里获取的一些蛋白质的基因。
科学家一般不会把病毒划归为活的生物体,这是因为病毒无法独立复制,但是像这样的巨大病毒——具有它们自己的蛋白质合成机制以及其他通常在活体细胞中才能够完成的功能——模糊了什么是活的有机体,以及什么是非生命之间的界限。唯一已知的较大病毒能够感染一种淡水变形虫,且被认为是一个近亲。
流感病毒是根据其表面结构来命名的。H代表了血凝素,它的作用是让病毒能够结合宿主细胞;N代表了神经氨酸苷酶,其作用是让已经自我复制的病毒从细胞中释放出去。甲型流感中H可分为16个亚型,N可分为9个亚型。所有这些亚型的病毒都曾从鸟类体内分离出来过。

医学分类

一,呼吸道病毒及肠道病毒麻疹病毒脊髓灰质炎病毒,柯萨奇病素
二,虫媒病毒及出血热病毒
流行性乙型脑炎病毒,登革病毒,出血热病毒,汉坦病毒,埃博拉病毒
三,狂犬病病毒与逆转录病毒
狂犬病病毒,人类免疫缺陷病毒,人类嗜T细胞病毒
四,肝炎病毒
甲型肝炎病毒,乙型肝炎病毒 ,丙型肝炎病毒,丁型肝炎病毒,戊型肝炎病毒
五,疱疹病毒
单纯疱疹病毒,水痘-带状疱疹病毒,巨细胞病毒,EBV
六,其他病毒
人类乳头瘤病毒,轮状病毒,冠状病毒,风疹病毒

9 历史发现

关于病毒所导致的疾病,早在公元前二至三个世纪的印度和中国就有了关于天花的记录。但直到19世纪末,病毒才开始逐渐得以发现和鉴定。1884年,法国微生物学家查理斯·尚柏朗(Charles Chamberland)发明了一种细菌无法滤过的过滤器(Chamberland氏烛形滤器,其滤孔孔径小于细菌的大小),他利用这一过滤器就可以将液体中存在的细菌除去。1892年,俄国生物学家伊凡诺夫斯基(Dmitry Ivanovsky)在研究烟草花叶病时发现,将感染了花叶病的烟草叶的提取液用烛形滤器过滤后,依然能够感染其他烟草。于是他提出这种感染性物质可能是细菌所分泌的一种毒素,但他并未深入研究下去。当时,人们认为所有的感染性物质都能够被过滤除去并且能够在培养基中生长,这也是疾病的细菌理论(germ theory)的一部分。1898年,荷兰微生物学家马丁乌斯·贝杰林克(Martinus Beijerinck)重复了Ivanovsky的实验,并相信这是一种新的感染性物质。他还观察到这种病原只在分裂细胞中复制,由于他的实验没有显示这种病原的颗粒形态,因此他称之为contagium vivum fluidum(可溶的活菌)并进一步命名为virus(病毒)。贝杰林克认为病毒是以液态形式存在的(但这一看法后来被温德尔·梅雷迪思·斯坦利推翻,他证明了病毒是颗粒状的)。同样在1899年,Friedrich Loeffler和Paul Frosch发现患口蹄疫动物淋巴液中含有能通过滤器的感染性物质,由于经过了高度的稀释,排除了其为毒素的可能性;他们推论这种感染性物质能够自我复制。
20世纪早期,英国细菌学家Frederick Twort发现了可以感染细菌的病毒,并称之为噬菌体。[14]随后法裔加拿大微生物学家Félix d'Herelle描述了噬菌体的特性:将其加入长满细菌的琼脂固体培养基上,一段时间后会出现由于细菌死亡而留下的空斑。高浓度的病毒悬液会使培养基上的细菌全部死亡,但通过精确的稀释,可以产生可辨认的空斑。通过计算空斑的数量,再乘以稀释倍数就可以得出溶液中病毒的个数。他们的工作揭开了现代病毒学研究的序幕。
在19世纪末,病毒的特性被认为是感染性、可滤过性和需要活的宿主,也就意味着病毒只能在动物或植物体内生长。1906年,哈里森发明了在淋巴液中进行组织生长的方法;接着在1913年,E. Steinhardt、C. Israeli和R. A. Lambert利用这一方法在豚鼠角膜组织中成功培养了牛痘苗病毒,突破了病毒需要体内生长的限制。[16]1928年,H. B. Maitland和M. C. Maitland有了更进一步的突破,他们利用切碎的母鸡肾脏的悬液对牛痘苗病毒进行了培养。他们的方法在1950年代得以广泛应用于脊髓灰质炎病毒疫苗的大规模生产。
美国科学家温德尔·斯坦利1931年,德国工程师恩斯特·鲁斯卡和马克斯·克诺尔发明了电子显微镜,使得研究者首次得到了病毒形态的照片。1935年,美国生物化学家和病毒学家温德尔·梅雷迪思·斯坦利发现烟草花叶病毒大部分是由蛋白质所组成的,并得到病毒晶体。随后,他将病毒成功地分离为蛋白质部分和RNA部分。温德尔·斯坦利也因为他的这些发现而获得了1946年的诺贝尔化学奖。烟草花叶病毒是第一个被结晶的病毒,从而可以通过X射线晶体学的方法来得到其结构细节。第一张病毒的X射线衍射照片是由Bernal和Fankuchen于1941年所拍摄的。1955年,通过分析病毒的衍射照片,罗莎琳·富兰克林揭示了病毒的整体结构。同年,Heinz Fraenkel-Conrat和Robley Williams发现将分离纯化的烟草花叶病毒RNA和衣壳蛋白混合在一起后,可以重新组装成具有感染性的病毒,这也揭示了这一简单的机制很可能就是病毒在它们的宿主细胞内的组装过程。
20世纪的下半叶是发现病毒的黄金时代,大多数能够感染动物、植物或细菌的病毒在这数十年间被发现。1957年,马动脉炎病毒和导致牛病毒性腹泻的病毒(一种瘟病毒)被发现;1963年,巴鲁克·塞缪尔·布隆伯格发现了乙型肝炎病毒;1965年,霍华德·马丁·特明发现并描述了第一种逆转录病毒;这类病毒将RNA逆转录为DNA的关键酶,逆转录酶在1970年由霍华德·特明和戴维·巴尔的摩分别独立鉴定出来。[28]1983年,法国巴斯德研究院的吕克·蒙塔尼和他的同事弗朗索瓦丝·巴尔-西诺西首次分离得到了一种逆转录病毒,也就是现在世人皆知的艾滋病毒(HⅣ)。其二人也因此与发现了能够导致子宫颈癌的人乳头状瘤病毒的德国科学家哈拉尔德·楚尔·豪森分享了2008年的诺贝尔生理学与医学奖。
1886年,在荷兰工作的德国人麦尔(Mayer)把患有花叶病的烟草植株的叶片加水研碎,取其汁液注射到健康烟草的叶脉中,能引起花叶病,证明这种病是可以传染的。通过对叶子和土壤的分析,麦尔指出烟草花叶病是由细菌引起的。
1892年,俄国的伊万诺夫斯基(Ivanovski)重复了麦尔的试验,证实了麦尔所看到的现象,而且进一步发现,患病烟草植株的叶片汁液,通过细菌过滤器后,还能引发健康的烟草植株发生花叶病。这种现象起码可以说明,致病的病原体不是细菌,但伊万诺夫斯基将其解释为是由于细菌产生的毒素而引起。生活在巴斯德的细菌致病说的极盛时代,伊万诺夫斯基未能做进一步的思考,从而错失了一次获得重大发现的机会。
1898年,荷兰细菌学家贝杰林克(Beijerinck)同样证实了麦尔的观察结果,并同伊万诺夫斯基一样,发现烟草花叶病病原能够通过细菌过滤器。但贝杰林克想得更深入。他把烟草花叶病株的汁液置于琼脂凝胶块的表面,发现感染烟草花叶病的物质在凝胶中以适度的速度扩散,而细菌仍滞留于琼脂的表面。从这些实验结果,贝杰林克指出,引起烟草花叶病的致病因子有三个特点:1,能通过细菌过滤器;2,仅能在感染的细胞内繁殖;3,在体外非生命物质中不能生长。根据这几个特点他提出这种致病因子不是细菌,而是一种新的物质,称为“有感染性的活的流质”,并取名为病毒,拉丁名叫“Virus”。
神奇的病毒“诞生”了!
几乎是同时,德国细菌学家勒夫勒(Loeffler)和费罗施(Frosh)发现引起牛口蹄疫的病原也可以通过细菌滤器,从而再次证明伊万诺夫斯基和贝杰林克的重大发现。
“virus”一词源于拉丁文,原指一种动物来源的毒素。病毒能增殖、遗传和演化,因而具有生命最基本的特征,但至今对它还没有公认的定义。最初用来识别病毒的性状,如个体微小、一般在光学显微镜下不能看到、可通过细菌所不能通过的过滤器、在人工培养基上不能生长、具有致病性等,现仍有实用意义。但从本质上区分病毒和其他生物的特征是:①含有单一种核酸(DNA或RNA)的基因组和蛋白质外壳,没有细胞结构;②在感染细胞的同时或稍后释放其核酸,然后以核酸复制的方式增殖,而不是以二分裂方式增殖;③严格的细胞内寄生性。病毒缺乏独立的代谢能力,只能在活的宿主细胞中,利用细胞的生物合成机器来复制其核酸并合成由其核酸所编码的蛋白,最后装配成完整的、有感染性的病毒单位,即病毒粒。病毒粒是病毒从细胞到细胞或从宿主到宿主传播的主要形式。
病毒一词的涵义可以是:指那些在化学组成和增殖方式是独具特点的,只能在宿主细胞内进行复制的微生物或遗传单位。它的特点是:只含有一种类型的核酸(DNA或RNA)作为遗传信息的载体;不含有功能性核糖体或其它细胞器;RNA病毒,全部遗传信息都在RNA上编码,这种情况在生物学上是独特的;体积比细菌小得多,仅含有少数几种酶类;不能在无生命的培养基中增殖,必须依赖宿主细胞的代谢系统复制自身核酸,合成蛋白质并装配成完整的病毒颗粒,或称病毒体(完整的病毒颗粒是指成熟的病毒个体)。
由于病毒的结构和组分简单,有些病毒又易于培养和定量,因此从20世纪40年代后,病毒始终是分子生物学研究的重要材料。
在实践方面,病毒的研究对防治人类、植物和动物的疾病作出了重要贡献。如病毒疫苗的发展,利用昆虫病毒作为杀虫剂等。1982 年将资料齐全而能分类的病毒划分为7大群:(双链)ds DNA,有包膜;(双链)ds DNA,无包膜;(单链)ss DNA ,无包膜;(双链)ds RNA,有包膜;(双链)ds RNA,无包膜;(单链)ss RNA,有包膜;(单链)ss RNA,无包膜。
病毒感染使用抗生素无效,不推荐感染时使用抗生素。干扰素作为处方药,不得随意购买和使用,遵照医嘱使用。

10 培养检测

病毒研究的发展常常与病毒培养和检测方法的进步有密切的关系,特别在脊椎动物病毒方面,小鼠和鸡胚接种、组织培养、超速离心、凝胶电泳、电子显微镜和免疫测定等技术,对病毒学的发展具有深刻的影响。
噬菌体的培养和检测方法最为简单。将噬菌体接种到易感细菌的肉汤培养物中,经18~24小时后,混浊的培养物重新透明,此时细菌被裂解,大量噬菌体被释放到肉汤中,再经除菌过滤,即为粗制噬菌体。为了测定其中噬菌体的数量,将粗制噬菌体稀释到每一接种量含100个左右,与过量的细菌混合,然后铺种于琼脂平皿上,在温箱中培养过夜,细菌繁殖成乳白色衬底,被噬菌体裂解的区域则在此衬底上表现为圆形的透明斑,称为噬斑。噬斑数代表该接种量中有活力的噬菌体数量。如果挑出单个噬斑来培养,就能获得由单个噬菌体所繁殖的后代,达到分离纯化的目的。
动物病毒(见脊椎动物病毒)的培养可在自然宿主、实验动物、鸡胚或细胞培养中进行,以死亡、发病或病变等作为病毒繁殖的直接指标,或以血细胞凝集、抗原测定等作为间接指标。收获发病动物的组织磨成悬液或有病变的细胞培养液,即为粗制病毒。测定活病毒数量可采用空斑法,其原理与噬斑法相同,但以易感的动物单层细胞代替细菌,在接种适当稀释的病毒后,用含有培养液和中性红的琼脂覆盖,使病毒感染局限在小面积内形成病变区,衬底的健康细胞被中性红染成红色,病变区不染色而显示为空斑。
至今植物病毒的培养和检测大都是在整株植物上进行的。从捣碎的病叶汁中制备病毒,常用枯斑法检测。用手指蘸上混有金刚砂的稀释病毒在植物叶片上轩轻摩擦,经一定时间后出现单个分开的圆形坏死或退绿斑点,称为枯斑。
除了利用病毒的致病性定量检测病毒外,还可应用物理方法,如在电子显微镜下计数病毒颗粒,或用紫外分光光度计测定提纯病毒的蛋白和核酸量,这些方法所测得的数据包括了有感染性和无感染性的病毒粒。
应用电子显微镜不但能看清病毒粒的大小、形态,还可以分辨其表面的蛋白亚单位和内部的核壳等超微结构。DNA
大小与形态
不同病毒的大小变动于20~450纳米之间。最大的为痘病毒科,大小为(170~260)×(300~450)纳米,最小的为双联病毒科,直径18~20纳米。
病毒的形态也是多样的:球状(包括二十面体),如脊髓灰质炎病毒和有包膜的如疱疹病毒;杆状(包括棒状),如烟草花叶病毒;丝状,如甜菜黄花病毒;弹状,如水疱性口炎病毒;复杂构型,如蝌蚪状的T偶数噬菌体。有些病毒在细胞内呈自然晶体排列。

11 化学组成

核酸是带有遗传密码的病毒基因组。病毒依所含核酸种类不同可分为DNA病毒和RNA病毒。动物病毒或含DNA,或含RNA;植物病毒除少数组外大多为RNA病毒;噬菌体除少数科外大多为DNA病毒。
DNA或RNA可以是线型的或环状的,可以是单链的或双链的。RNA可以分节段或不分节段,单链RNA又分正链的和负链的。
在分节段的RNA植物病毒中,常见多分体基因组,即同一病毒的几个RNA节段分别装入衣壳中,形成大小不同的颗粒,有的分装在两种颗粒中称二分体基因组,如豇豆花叶病毒;有的分装在3种颗粒中称三分体基因组,如黄瓜花叶病毒和雀麦花叶病毒。
通过遗传学和生物化学方法,已查明一些病毒的基因图谱。对MS2和ΦΧ174噬菌体。花椰菜花叶病毒、SV40和乙型肝炎病毒核酸的核苷酸序列,已全部查明。
①蛋白质病毒的主要组分,依其功能可分为衣壳蛋白、膜蛋白、糖蛋白和内在酶4类。
衣壳蛋白包裹核酸形成保护性的外壳。简单的病毒只有1种衣壳蛋白,较复杂的如腺病毒衣壳是由六邻体、五邻体和纤维3种蛋白构成的。在有包膜的病毒如流感和水疱性口炎病毒中,膜蛋白一方面与外层脂质相连结,另一方面又同内部的核壳相连结,起到维系病毒内外结构的作用。糖蛋白位于包膜表面,有的形成突起,如流感病毒的血凝素,能与细胞膜受体结合。病毒虽无完整的酶系统,但常含有一些特殊的酶,如流感病毒的神经氨酸酶和噬菌体的溶菌酶。此外,呼肠孤病毒科、弹状病毒科、正粘病毒科和副粘病毒科病毒粒中含RNA多聚酶,反录病毒科含反转录酶,均与核酸复制有关。已查明十几种病毒蛋白的全氨基酸序列。
②脂质存在于包膜中,包膜是在病毒成熟时从细胞质膜或核膜芽生获得的,所以病毒脂质常具有宿主细胞脂质的特征。用有机溶剂或去污剂破坏包膜脂质,可使病毒粒裂解。
③糖除核酸中的戊糖外,病毒包膜还含有与蛋白或脂质结合的多糖。
烟草花叶病毒、流感病毒和枯草杆菌噬菌体的电子显微镜照片和结构模式图(见植物病毒、正粘病毒科和细菌病毒)。
复制
病毒复制指病毒粒入侵宿主细胞到最后细胞释放子代毒粒的全过程,包括吸附、进入与脱壳、病毒早期基因表达、核酸复制、晚期基因表达、装配和释放等步骤。各步的细节因病毒而异。
吸附与进入
T4噬菌体先以其尾丝与大肠杆菌表面受体结合,随后尾鞘收缩,裸露出的尾轴穿入细菌外壁,把头部内储存的DNA注射到细菌体内。动物病毒也是先与细胞受体结合,以后或是靠细胞的吞噬作用进入,或是病毒包膜与细胞质膜融合后使核壳进入。植物病毒则是通过伤口侵入或通过媒介昆虫直接注入。一般情况下,病毒均须经脱壳,即脱去外被的蛋白质释放核酸,才能进行下一步复制。
基因表达
将其核酸上的遗传信息转录成信使核糖核酸(mRNA),然后再翻译成蛋白质。一般在核酸复制以前的称早期基因表达,所产生的早期蛋白质,有的是核酸复制所需的酶,有的能抑制细胞核酸和蛋白质的合成;在核酸复制开始以后的称晚期基因表达,所产生的晚期蛋白质主要是构成毒粒的结构蛋白质。早期和晚期蛋白质中都包括一些对病毒复制起调控作用的蛋白质。
转录
因病毒核酸的类型而异,共有6种方式:双链DNA(dsDNA)的病毒如SV40,其转录方式与宿主细胞相同;含单链DNA(ssDNA)的病毒如小DNA病毒科,需要通过双链阶段后再转录出mRNA;含单链正链RNA(ss+RNA)的病毒如脊髓灰质炎病毒、烟草花叶病毒和Qβ噬菌体,其RNA可直接作为信使,利用宿主的蛋白质合成机器合成它所编码的蛋白质;含单链负链RNA(ss-RNA)的病毒如水疱性口炎病毒和流感病毒,需先转录成互补的正链作为其mRNA,ssRNA的反录病毒如鸡肉瘤病毒和白血病病毒,需先经反转录成dsDNA而整含到宿主染色体中,于表达时再转录成mRNA,含dsRNA的呼肠孤病毒,则以保守型复制方式转录出与原来双链中的正链相同的mRNA。
有些病毒(如腺病毒和SV40)的基因是不连续的,有外显子与内含子之分,转录后有剪接过程,把内含子剪除而把外显子连接起来,才有mRNA的功能。多数病毒的mRNA还需经过其他加工,如在5′端加上“帽子”结构和在3′端加上多聚腺嘌呤核苷酸。
病毒基因转录所需酶的来源也不相同,如小DNA病毒科、乳多泡病毒科所需依赖于DNA的RNA多聚酶,都是利用宿主原有的酶;而弹状病毒科、正粘病毒科、副粘病毒科和呼肠孤病毒科所需的依赖于RNA的RNA多聚酶,以及反录病毒科所需的反转录酶,都是病毒粒自备的。
翻译
不同病毒mRNA翻译的方式是不同的。一般认为噬菌体的翻译是多顺反子的,如Qβ的RNA上有3个顺反子(为单个肽链编码的基因功能单位),可沿着1条mRNA独立地翻译出3种多肽。动物病毒的翻译是单顺反子的,即由其基因组转录成不同的mRNA,每种mRNA翻译成一种多肽。分节段基因组病毒如流感病毒和呼肠孤病毒,每1节段RNA构成1个顺反子,多分体基因组的植物病毒也是如此。脊髓灰质炎病毒的mRNA先被翻译成1个分子量为20万的巨肽,再经裂解成为衣壳蛋白和酶。
有些病毒如ΦΧ174,Qβ噬菌体和SV40等,存在基因重叠现象,即按读码位相不同而从同一核苷酸序列可以表达出一种以上的蛋白质。这是病毒经济地利用其有限的遗传信息的1种方式。
核酸复制
DNA病毒按照经典的沃森-克里克碱基配对方式进行DNA复制。乳多泡病毒的环状 DNA按“滚环”模式进行复制时,需要有核酸内切酶和连接酶参与。病毒RNA是通过半保留方式复制的,即以病毒RNA(vRNA)为模板,同时转录几个互补链(cRNA),cRNA转录完成并脱落后,又以同样方式再转录出新的vRNA。因此,在感染细胞中可以查出具有部分双链结构而又拖着多条长短不同单链“尾巴”(正在合成中的互补链)的“复制中间体”。
病毒核酸复制所需酶的来源也各不相同。SV40DNA合成所需的酶都来自宿主。含RNA的Qβ噬菌体、小RNA病毒科和含ssRNA的植物病毒所需RNA多聚酶的某个亚基,可能由病毒基因编码,而其他亚基来自宿主。疱疹病毒DNA复制所需的酶,部分地由病毒编码,如DNA多聚酶和胸苷激酶,可能还有核苷酸还原酶。痘类病毒的独立自主能力最强,甚至能在去核细胞中进行DNA复制,其基因组至少能为75种蛋白质编码,包括DNA多聚酶、胸苷激酶、脱氧核糖核酸酶和聚核苷酸连接酶。
装配与释放
病毒核酸和结构蛋白是分别复制的,然后装配成完整的病毒粒。最简单的装配方式(如烟草花叶病毒)是核酸与衣壳蛋白相互识别,由衣壳亚单位按一定方式围绕RNA聚集而成,不借助酶,也无需能量再生体系。许多二十面体病毒粒先聚集其衣壳,然后再装入核酸。有包膜的病毒,在细胞内形成核完后转移至被病毒修饰了的细胞核膜或质膜下面,以芽生方式释放病毒粒。T4噬菌体则先分别装配头部、尾部和尾丝,最后组合成完整病毒粒,裂解细菌而释放,其中有些步骤需酶的作用。
细胞水平上的感染类型和宿主反应
很早发现噬菌体感染有裂解性和溶源性之分。以大肠杆菌的λ噬菌体为例,裂解性感染于经历上述复制周期后产生大量子代病毒粒而将细菌裂解;而溶源性感染时,噬菌体DNA环化并整合到大肠杆菌DNA的特异性位点上,随着细菌的分裂而传给子代细菌,细菌不被裂解也不产生子代病毒粒。营养条件、紫外线或化学药物都能使溶性源感染转化为裂解性。动物的DNA病毒如 SV40、腺病毒、疱疹病毒等于感染敏感细胞(称为容许细胞)后,形成裂解性感染,而于感染不大敏感的细胞(称为不容许细胞)后,则形成转化性感染。转化性感染与溶源性感染相似,病毒DNA或其片段整合于细胞染色体上,并随细胞分裂而传给子代细胞,表达其部分基因(一般为早期基因),但不产生子代病毒粒,细胞也不死亡,但被转化成类似于肿瘤细胞,可无限地传代。另一方面,RNA肿瘤病毒(如鸡肉瘤病毒)必须先将其RNA反转录成dsDNA并整合到细胞染色体上,才能进行复制,所以这种感染方式是独特的,既是转化性感染,又产生大量病毒粒。
宿主细胞对病毒感染的反应有4种:无明显反应、细胞死亡、细胞增生后死亡和细胞转化。例如,副粘病毒SV5在细胞培养中产生大量病毒而不引起明显反应。多数病毒感染敏感细胞时,由于抑制了细胞核酸和蛋白质合成而引起细胞死亡。痘病毒感染时,先刺激细胞多次分裂然后死亡,造成痘疱病灶。DNA病毒和RNA肿瘤病毒则引起细胞转化。
有些动物病毒于感染宿主细胞后,在胞核或细胞质内形成具有特殊染色特性的内含物,称为包涵体,如痘病毒的细胞质内包涵体和疱疹病毒的胞核内包涵体。这些包涵体有的是由未成熟或成熟的病毒粒构成,有的是宿主细胞的反应产物,有的是两者的混合物。有些昆虫病毒的病毒粒包埋在蛋白基质中,形成包涵体如核型多角体病毒。
脊椎动物细胞感染病毒后的另一种反应是产生干扰素。干扰素是一种动物细胞编码的蛋白,其基因平常处于不活动状态,于病毒感染或经双链RNA诱导后活化。干扰素有广谱的抗病毒作用,但并不直接作用于病毒,其作用机制是通过与细胞膜结合,激活具有抗病毒作用的3种酶,阻断了病毒mRNA的翻译。干扰素在防止病毒扩散和疾病恢复中有一定作用,并有可能成为一种抗病毒药物。
机体水平上的感染类型和宿主反应
高等动、植物感染病毒后,可表现为显性感染和持续感染,动物病毒还可表现为隐性感染。隐性感染无临床症状,显性感染表现为临床疾病;在持续感染中,病毒在机体内长期存在。动物病毒的持续感染又分为潜伏感染、慢性感染和长程感染3类。潜伏感染如疱疹,平常无症状也查不到病毒,但由于内外因素的刺激而复发时出现病毒;慢性感染如乙型肝炎,有或无症状,但可查到病毒;长程感染限于少数病毒,如绵羊的Maedi-visna(一种反录病毒感染)可查到病毒;潜伏期和病程都很长,进行性发病直至死亡。
高等动物能对病毒感染产生特异性免疫反应。免疫反应分为体液免疫和细胞免疫两类,体液免疫表现为由B细胞产生的抗体,其中包括能特异地灭活病毒的中和抗体。中和抗体在预防再感染中起主导作用。细胞免疫的主要表现是识别病毒抗原并发生反应的T淋巴细胞,在清除病毒和病毒感染细胞中起主导作用。
植物细胞对病毒常有过敏反应,细胞迅速死亡,形成枯斑,同时病毒复制也受到限制。另一种反应是产生一种很象干扰素的抗病毒因子,能保护未受感染的细胞。
比如:EV71肠道病毒
据专家介绍,肠道病毒EV71是人肠道病毒的一种,简称EV71,一年四季都可发生,常见于4~9月,主要通过唾液、疱疹液、粪便污染的手、毛巾、手绢、牙杯、玩具、食具、奶具及床上用品、内衣等密切接触传播,常引起儿童手足口病、病毒性咽峡炎,重症患儿可出现肺水肿、脑炎等,统称为肠道病毒EV71感染疾病。该病多发生于儿童,尤其3岁以下婴幼儿多发,少数病情较重,严重的会引起死亡。
患儿感染肠道病毒EV71后,多以发热起病,一般为38℃左右,发热同时在口腔、手足、臀部出现皮疹,或出现口腔粘膜疱疹。
部分病人早期有咳嗽等感冒样表现。发热1~2天后开始出现皮疹,通常出现在手掌和足底,也可以出现在臀部。有的患儿不发热,只表现为手、足、臀部皮疹或疱疹性咽峡炎,病情较轻。大多数患儿在一周以内体温下降、皮疹消退,病情恢复。
中国疾病预防控制中心专家介绍说,如果发现孩子发烧、有皮疹等症状,尽快到正规医院就诊。孩子患病后应暂停去幼儿园和学校,避免传染给他人,防止再感染其他疾病。
专家强调,患儿的家庭应使用肥皂、84消毒液对日常用品、玩具、尿布进行消毒,对奶具、餐具煮沸消毒。患儿粪便及其他排泄物可用消毒剂或漂白粉消毒;将衣被阳光暴晒,室内保持通风换气。
春夏是肠道病毒感染容易发生的季节,要讲究环境卫生、食品卫生和个人卫生。不喝生水、不吃生冷食物,饭前便后洗手,保持室内空气流通。尽量不要带婴幼儿去人群密集的场所。哺乳的母亲要勤洗澡、勤换衣服,喂奶前要清洗奶头。
在托幼机构、小学等儿童集体生活、学习的场所,专家建议要做好晨间体检,发现有发热、皮疹的孩子,要立即要求家长带小孩去医院就诊,同时报告相关部门。如发现有发热、皮疹的孩子后,要立即对玩具、被褥、桌椅等进行消毒;同时做好食堂、卫生间、教室等的消毒处理。

12 危害

致瘤作用
有一些病毒能诱发良性肿瘤,如痘病毒科的兔纤维瘤病毒、人传染性软疣病毒和乳多泡病毒科的乳头瘤病毒;另有一些能诱发恶性肿瘤,按其核酸种类可分为DNA肿瘤病毒和RNA肿瘤病毒。DNA肿瘤病毒包括乳多泡病毒料的SV40和多瘤病毒,以及腺病毒科和疱疹病毒科的某些成员,从肿瘤细胞中可查出病毒核酸或其片段和病毒编码的蛋白,但一般没有完整的病毒粒。RNA肿瘤病毒均属反录病毒科,包括鸡和小鼠的白血病和肉瘤病毒,从肿瘤细胞中可查到病毒粒。这两类病毒均能在体外转化细胞。在人类肿瘤中,已证明EB病毒与伯基特淋巴瘤和鼻咽癌有密切关系;从一种T细胞白血病查到反录病毒。此外,Ⅱ型疱疹病毒可能与宫颈癌病因有关,乙型肝炎病毒可能与肝癌病因有关。但是,病毒大概不是唯一的病因,环境和遗传因素可能起协同作用。
病毒感染常发生在感冒等上呼吸道感染后,病毒颗粒可由血循环直接进入内耳血循环中,引起耳蜗毛细胞、神经节细胞及微血管等结构的破坏。病毒亦可经圆窗侵入内耳,引起迷路炎等病损,引起耳聋。
起源
对于病毒的起源曾有过种种推测;一种观点认为病毒可能类似于最原始的生命;另一种认为病毒可能是从细菌退化而来,由于寄生性的高度发展而逐步丧失了独立生活的能力,例如由腐生菌→寄生菌→细胞内寄生菌→支原体→立克次氏体→衣原体→大病毒→小病毒;还有一种则认为病毒可能是宿主细胞的产物。这些推测各有一定的依据,因此病毒在生物进化中的地位是未定的。但是,不论其原始起源如何,病毒一旦产生以后,同其他生物一样,能通过变异和自然选择而演化。
分类
病毒分类命名的工作现由国际病毒分类委员会负责,已于 1971.1976.1979和1982年发表过 4次报告。
1982年将资料较齐全而能分类的病毒划分为7大群,分群的根据是基因组的核酸种类(DNA或RNA)、类型(ds或ss)和有无包膜
7大群中包括59个科组:
dsDNA,有包膜 4科
dsDNA,无包膜8科,1组
ssDNA,无包膜 3科,1组
dsRNA,有包膜1科
dsRNA,无包膜 1科,4个可能科
ssRNA,有包膜8科,1组
ssRNA,无包膜 4科,22组,1个可能组
如按宿主分类,则为:
细菌病毒10科
真菌病毒 3个可能科
植物病毒24组,1个可能组
无脊椎动物病毒 2科,1组
脊椎动物病毒9科
无脊椎、脊椎动物共有的病毒有6科,即痘病毒科虹彩病毒科、小DNA病毒科、披膜病毒科、布尼亚病毒科和小RNA病毒科,以及一个可能科,即二节段双链RNA病毒。
无脊椎、脊椎动物和植物共有的病毒有2科,即呼肠孤病毒科和弹状病毒科。
病毒分类还处于初期阶段,以后还会迅速发展和演变。对资料较齐全的动物病毒和噬菌体都已立为科,科名采用拉丁文;而植物病毒则只立组,组名多采用缩拼法,即将某科的典型代表病毒的普通名称如Tobacco mo-saic virus缩拼为Tobamo-virus。科下分亚科及属,属下即为各个病毒的普通名称,目前尚未分种。

13 作用价值

生物病毒的好处
1.噬菌体可以作为防治某些疾病的特效药,例如烧伤病人在患处涂抹绿脓杆菌噬菌体稀释液
2.在细胞工程中,某些病毒可以作为细胞融合的助融剂,例如仙台病毒
3.在基因工程中,病毒可以作为目的基因的载体,使之被拼接在目标细胞的染色体上
4.在专一的细菌培养基中添加的病毒可以除杂
5.病毒可以作为精确制导药物的载体
6.病毒可以作为特效杀虫剂
7.病毒还在生物圈的物质循环和能量交流中起到关键作用.
8.病毒还可以用来治疗疾病,比如癌症
病毒疫苗对人类有防病毒有好处--促进了人类的进化,人类的很多基因都是从病毒中得到的。
病毒是一种非细胞生命形态,它由一个核酸长链和蛋白质外壳构成,病毒没有自己的代谢机构,没有酶系统。因此病毒离开了宿主细胞,就成了没有任何生命活动、也不能独立自我繁殖的化学物质。一旦进入宿主细胞后,它就可以利用细胞中的物质和能量以及复制、转录和转译的能力,按照它自己的核酸所包含的遗传信息产生和它一样的新一代病毒。
病毒基因同其他生物的基因一样,也可以发生突变和重组,因此也是可以演化的。因为病毒没有独立的代谢机构,不能独立的繁殖,因此被认为是一种不完整的生命形态。科学家发现了比病毒还要简单的类病毒,它是小的RNA分子,没有蛋白质外壳,但它可以在动物身上造成疾病。这些不完整的生命形态的存在说明无生命与有生命之间没有不可逾越的鸿沟。
不同寻常的自然角色:
其实,病毒也并非一无是处,它在人类生存和进化的过程当中,扮演了不同寻常的角色,人和脊椎动物直接从病毒那里获得了100多种基因,而且人类自身复制DNA的酶系统,也可能来自于病毒。
生活场所
严格的活细胞内寄生

14 新型病毒

专家称SARS病毒不是“非典”
总部位于瑞士日内瓦的世界卫生组织于当地时间24日发布公告称,一名感染了类似“非典”(Atypical pneumonias, 简称ATP)病毒的卡塔尔男子目前正在英国接受特别治疗。此前,已有一名沙特籍男子因感染相同病毒而死亡。世卫组织尚未针对新病毒发布旅行警告,称正进行进一步调查。
天然病毒m1
2014年10月13日,广州中山大学科研人员发现天然病毒M1能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。M1病毒是一种从中国海南岛分离得到的天然病毒,能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。
整体动物实验表明,经尾静脉注射的M1病毒能显著富集在肿瘤组织并抑制肿瘤生长,正常器官则不受影响。除细胞水平及动物实验之外,课题组还使用临床标本离体活组织培养模型进一步证实了上述新型溶瘤病毒的有效性和特异性。据悉,该研究成果对阐明新型天然溶瘤病毒M1选择性杀伤肿瘤细胞的机制和研发新型靶向抗肿瘤药物都具有重要意义。

15 病毒与癌

第一个发现癌的人弗朗西斯·佩顿·劳斯
弗朗西斯·佩顿·劳斯(Francis Peyton Rous)1879年10月5日出生于美国,是纽约市洛克菲勒研究所的内科医生和病毒学家。
劳斯医生毕业于马里兰州巴尔的摩市约翰斯·霍普金斯大学。1911年1月21日,弗朗西斯·佩顿·劳斯发表了一份报告:癌性肿瘤是病毒所致。这一提法在医学史上是首次。因为还没有证据表明癌症对人或动物有传染性。劳斯也成为发现这种“肿瘤病毒”的第一人,因为这种病毒最先是在那只被劳斯接诊的鸡身上发现的,所以病毒被命名为“劳斯鸡肉瘤病毒”。1966年,已经87岁高龄的劳斯在距离发现这种病毒55年之后,获得了诺贝尔生理学或医学奖。这种病毒的发现与劳斯积极的工作是分不开的,多年来,劳斯一直在积极地进行着研究工作,事实上,直到他过90岁生日时为止,他一直都在工作。

16 艾滋进展

功能性治愈艾滋婴儿病毒
美国研究人员3日报告说,他们通过抗逆转录病毒疗法实现了首次“功能性治愈”艾滋病病毒婴儿感染者。
美国约翰斯·霍普金斯儿童医疗中心、密西西比大学等机构的研究人员3日在美国亚特兰大举行的“2013年逆转录病毒与机会性感染大会”上报告说,他们在两年前选取一名通过母婴传播感染艾滋病病毒的女婴为治疗对象。在该婴儿出生30小时后,研究人员对其进行组合式抗逆转录病毒治疗。 检测证明,经过治疗该女婴血液中艾滋病病毒的数量明显递减,在其出生29天后,体内的艾滋病病毒已经检测不到。研究人员在随后18个月内继续对她进行抗逆转录治疗,并在停止治疗10个月后发现,其体内的艾滋病病毒抗体仍为阴性,常规血液检测中未发现艾滋病病毒存在。
研究人员说:“对新生儿进行抗逆转录病毒治疗后可以阻止体内藏匿的艾滋病病毒感染宿主细胞,该疗法能够清除、抑制该病毒,在非终身治疗的情况下实现‘功能性治愈’。”
“功能性治愈”是指感染者体内的艾滋病病毒被完全抑制,机体免疫功能正常,即便不接受治疗,用常规方法也难以在患儿血液中检测出病毒。
研究人员表示,根除艾滋病病毒,即“根本性治愈”艾滋病当前难以实现。针对艾滋病病毒婴儿感染者的药物治疗,一般开始于其出生后3到4个月之间,因此尽早、准确进行抗逆转录治疗对感染艾滋病病毒的婴儿意义重大。

17 对人类的重要性

在地球上,病毒的数量大的惊人,把一个普通玻璃杯中装满海水,你大约就握着上百亿个病毒,而整个大海里面病毒的数量更是达到了10的30次方。如果把地球上所有的病毒首尾相接连成一条长链,那么每秒能跑30万公里的光也需要花费 2 亿年才能从长链的一端跑到另一端。不过我们并不用担心,在这个病毒的“海洋”里,能对人类造成危害的仅占极小一部分。
病毒在特定条件下具有一定的生命特征,但自己却无法完成任何生命过程,它们不能代谢养料,不能产生能量,也不能作为其他生物的食物。对于病毒本身来说,它们存在的唯一目的就是感染宿主,然后利用宿主细胞的资源不断地扩增自己的数量,彻头彻尾就是一群“懒惰的”寄生物。不过,我们却绝对不能忽视它们的存在。因为对于大自然来说,这群“懒惰”的寄生物扮演着极为重要的角色,它们是生命进化的推动者,同时也是整个生态系统正常运转的支撑者。
在病毒的“海洋”中,人类能够保持健康要归功于我们拥有一个完善的防卫系统,它不断地监视和清除来袭的病毒等病原体,如果这个系统出现问题,人体就会变得弱不禁风,这个防卫系统就是免疫系统。人类免疫缺陷病毒(HIV)感染人体后会破坏免疫系统,在免疫系统崩溃后,任何一个普通的感染对人体来说都是致命的。所以,艾滋病的危险性不在于HIV本身,而是感染HIV后的各种机会性感染所带来的并发症。在生命起源的初期免疫系统还没有完善地建立起来,免疫系统的进化是整个生命系统进化的重要基础,而免疫系统的进化则是在病毒等各种病原体的刺激下完成的。
生命在进化过程中要经历自然选择,也就是达尔文提出的“适者生存”进化理论。病毒感染对于生命来说就是一种选择压力,在病毒面前弱不禁风的个体会被淘汰掉,病毒因而成为了生物进化的强大驱动力,它们筛选和保留下免疫力强大的个体,由此推动生命的演化。也正是由于病毒等病原体的存在,生命的进化才能得以快速而高效地进行,病毒世界的基因多样性远远大于所有其他生物的基因多样性之和,病毒也因此成为地球上基因库重要的保存者。
在现代测序技术的发展下,人类基因组已经得到破译,科学家惊奇地发现,在人类的基因组中竟然有高达10万条片段来自病毒,这些病毒基因片段占据了人类基因组的8%,而编码人类细胞所有蛋白质的序列仅占据了基因组的1.2%-1.5%。如此大量的病毒基因片段在人类基因组中可能也发挥了重要的作用,虽然这其中还有大量未知的东西需要我们去挖掘,不过毋庸置疑的是,没有这些病毒基因片段,人类细胞将无法正常工作。
病毒在生态系统的平衡中也起着举足轻重的作用。在海洋里,每秒钟大约会发生10的23次方次病毒感染,这些感染是导致海洋生物死亡的主要原因之一,无论是小虾还是鲸鱼,都难逃病毒的攻击,它们在死后所释放出的内容物会成为其他生物的养料。除了动植物,细菌也是病毒感染的重要目标。据估计,病毒每天会杀死海洋中几乎半数的细菌,释放出数十亿吨碳供其他生命体使用,这个过程也是大自然碳循环重要的组成部分。所以,如果海洋中没有病毒,物质循环中就缺失了一个重要的链条,许多生命将难以得到生长繁衍的机会。
另外,海洋中还生活着大量的聚球藻,它们承担了地球上约1/4的光合作用,为地球制造大量的氧气。科学家发现在这种藻类里,编码进行光合作用蛋白质的基因中有一些来自于病毒。而据科学家估计,地球上10%的光合作用都有病毒基因编码的蛋白参与。除此之外,地球上的藻类和细菌在维持地球大气中氧气和二氧化碳等气体的平衡上起到重要的作用,通过控制它们的数量,病毒也在间接地影响着气候。
对于我们自身来说,病毒所发挥的作用同样不可小觑。在我们的肠道里大约栖居着超过10万亿个细菌,它们构成了人们常说的肠道菌群。这些细菌对人体的健康非常重要,它们不但帮助人体消化食物,参与能量代谢,还影响着人体免疫系统的功能。而有研究表明,人类肠道里病毒的数量比细菌还要多,它们除了帮助人类控制肠道菌群的平衡,可能也具有直接的益生作用。比如,最近就有研究发现小鼠肠道内的诺如病毒能帮助小鼠修复受损的肠道粘膜和维持肠道粘膜正常的免疫功能。另外,一些温和的病毒,比如鼻病毒,还能够锻炼我们的免疫系统不对轻微的刺激产生反应,从而减少过敏反应。
我们时时刻刻和病毒生活在一起,它们在带来疾病的同时也在协助生命的维系,随着研究的深入,相信我们对病毒会有更为深刻的认识。


我来评分 :6
0

转载注明:转自5lulu技术库

本站遵循:署名-非商业性使用-禁止演绎 3.0 共享协议