baidu AnyQ Question Answering System

  • 更新时间: 2018-08-07
  • 来源: 原创或网络
  • 浏览数: 7次
  • 字数: 7584
  • 发表评论

目录

详细介绍

AnyQ(ANswer Your Questions) 开源项目主要包含面向FAQ集合的问答系统框架、文本语义匹配工具SimNet。

问答系统框架采用了配置化、插件化的设计,各功能均通过插件形式加入,当前共开放了20+种插件。开发者可以使用AnyQ系统快速构建和定制适用于特定业务场景的FAQ问答系统,并加速迭代和升级。

SimNet是百度自然语言处理部于2013年自主研发的语义匹配框架,该框架在百度各产品上广泛应用,主要包括BOW、CNNRNN、MM-DNN等核心网络结构形式,同时基于该框架也集成了学术界主流的语义匹配模型,如MatchPyramid、MV-LSTM、K-NRM等模型。SimNet使用PaddleFluid和Tensorflow实现,可方便实现模型扩展。使用SimNet构建出的模型可以便捷的加入AnyQ系统中,增强AnyQ系统的语义匹配能力

1 详细介绍

FAQ问答系统框架

AnyQ系统框架主要由Question Analysis、Retrieval、Matching、Re-Rank等部分组成,框架中包含的功能均通过插件形式加入,如Analysis中的中文切词,Retrieval中的倒排索引、语义索引,Matching中的Jaccard特征、SimNet语义匹配特征,当前共开放了20+种插件。AnyQ系统的配置化、插件化设计有助于开发者快速构建、快速定制适用于特定业务场景的FAQ问答系统,加速迭代和升级。 AnyQ的框架结构如下图:

baidu AnyQ  Question Answering System,by 5lulu.com

配置化

AnyQ系统集成了检索和匹配的众多插件,通过配置的方式生效;以检索方式和文本匹配相似度计算中的插件为例:

  • 检索方式(Retrieval)
    • 倒排索引:基于开源倒排索引Solr,加入百度开源分词
    • 语义检索:基于SimNet语义表示,使用ANNOY进行ANN检索
    • 人工干预:通过提供精准答案,控制输出
  • 匹配计算(Matching)

插件化

除框架外,AnyQ的所有功能都是通过插件形式加入,用户自定义的插件很容易加到AnyQ系统中,只需实现对应的接口即可,如自定义词典加载、Question分析方法、检索方式、匹配相似度、排序方式等,真正实现可定制和插件化。

文本语义匹配框架SimNet

SimNet是百度自然语言处理部于2013年自主研发的语义匹配框架,该框架在百度各产品上广泛应用,主要包括BOW、CNNRNN、MM-DNN等核心网络结构形式,同时基于该框架也集成了学术界主流的语义匹配模型,如MatchPyramid、MV-LSTM、K-NRM等模型。SimNet使用PaddleFluid和Tensorflow实现,可方便实现模型扩展。使用SimNet构建出的模型可以便捷的加入AnyQ系统中,增强AnyQ系统的语义匹配能力。

按照文本语义匹配网络结构, 可将SimNet中实现的网络模型主要分为如下两类:

  • Representation-based Models
    如:BOW, CNN, RNN(LSTM, GRNN)
    特点:文本匹配任务的两端输入,分别进行表示,之后将表示进行融合计算相似度

  • Interaction-based Models
    如:MatchPyramid, MV-LSTM, K-NRM, MM-DNN
    特点:在得到文本word级别的序列表示之后,根据两个序列表示计算相似度匹配矩阵,融合每个位置上的匹配信息给出最终相似度打分;

基于海量搜索数据的语义模型

基于百度海量搜索数据,我们训练了一个SimNet-BOW语义匹配模型,在一些真实的FAQ问答场景中,该模型效果比基于字面的相似度方法AUC提升5%以上,模型使用和获取方法参考Demo。


标签: 相似度

我来评分 :6
0

转载注明:转自5lulu技术库

本站遵循:署名-非商业性使用-禁止演绎 3.0 共享协议